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The variational approach has been applied to a study of bistable solitary waves of the first kind in d di-
mensions for some illustrative models. In particular, energy formulas and bistability criterion have been
derived and the variational results compared with those obtained numerically. In one dimension the
agreement is found to be excellent. As d is increased, the agreement decreases despite the fact that flexi-
bility was built into the trial wave function. The implications for successfully treating the three-

dimensional light-bullet problem are discussed.

PACS number(s): 42.65.Pc, 42.50.Rh

I. INTRODUCTION

Bistable solitary-wave solutions to the one-dimensional
generalized nonlinear Schridinger equation (GNLSE)
were described several years ago by Kaplan, Enns, and
co-workers [1,2]. Since then the concept has been ex-
tended into higher spatial dimensions d, viz., the bistable
“light bullet” for three dimensions [3—-5]. For certain
classes of intensity-dependent nonlinear refractive in-
dices, it was shown that two or more solitary waves could
exist with the same energy P but different propagation or
phase-shift parameters 5. To distinguish this definition of
bistability from one more recently introduced [6,7] into
the literature we shall, following Ref. [8], refer to the as-
sociated solitary waves as bistable solitary waves of the
first kind (BISOL1). The types of nonlinearity required
for BISOL1 to occur for arbitrary d can be deduced as
follows. For an intensity-(I) dependent nonlinearity of
the form f(I)=1I" with n =0, it has been shown [3,5] that
dP/db6>0 for n<2/d, dP/d8=0 for n=2/d, and
dP/db<0 for n>2/d. For d=1, 2, and 3, the critical
(zero) slope value of n is 2, 1, and 2, respectively. Thus
BISOL1 are possible for f(I) which are dominated by
different n values in different ranges of I. Such behavior
may occur in media for which different higher-order pho-
ton processes (an n-photon process yields an I” contribu-
tion) dominate at different intensities. Alternately, one
can [9] build up the requisite f () by combining different
media which are known to display saturable Kerr
behavior. As simple illustrative examples of each possi-
bility, consider the following nonlinearities.

(1) Polynominal model. f(I)=a,I+a,I*—a;I° with
a;,a,,a;>0.

(2) Saturable model.
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with ¢=1[a/(1—€)+b] and fy, =a '+(1—e)b !
—2(1—e)e !, with@,b,c>0and 0<e<1.

Model 2 is similar to model 1 in that it is Kerr-like
(f ~1I) at low I and rises like I3 at intermediate I (due to
the relation of ¢ to @,5). However, model 2 saturates to a
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constant value whereas in model 1, f(I) eventually de-
creases with increasing I. This latter difference has impli-
cations as to stability, as we shall explain shortly.

For d =1, both models can yield N shaped P(8) curves
if the parameters are suitably adjusted. (For the polyno-
mial model, the negative sign in the I° term changes the
sign of the slope contribution.) Numerically, using the
subscript cr to denote the critical value, one finds [2,9]
that an N shape occurs for R =a,a;/a3 <R ~0.08 for
model 1 and, e.g., taking @=0.01, 5=0.05, for
€<€,~0.01-0.02 for model 2. Models that yield N-
shaped P(8) curves in one dimension are particularly im-
portant because it is well known ([5] and references
therein) that solitary waves corresponding to the
positive-slope regions of the P(§) curve are stable against
weak perturbations while those corresponding to negative
slope are absolutely unstable. Thus N-shaped P(8)
curves allow for two stable branches, which has been ex-
ploited by Enns at et al. [5] in their study of optical
switching between ‘“low” and ‘“high” bistable soliton
states. They have further shown [2] that for f(I) which
are Kerr-like at small I, rise like I or faster at intermedi-
ate I, and either saturate or become Kerr-like again at
large I, the solitary waves belonging to both the lower
and upper positive-slope legs (low and high states) of the
N-shaped energy curve are stable against large perturba-
tions. The solitary waves are solitonlike. The saturable
model 2 is an example of such an f(I). For the polyno-
mial model, the upper positive-slope solitary waves have
been found [2] to be unstable against sufficiently large
perturbations.

This stability issue aside, for most f (I) (including mod-
els 1 and 2), one cannot analytically determine the exact
solitary-wave shapes, the exact P(8) relation, or, most
importantly, the condition on the model parameters for
bistability (i.e., the N shape) to occur. As in Refs. [2-5],
one has resorted in general to numerical techniques, ex-
cept for some artificially constructed (e.g., the “linear
plus smooth step”” model [2-5]) £ (I) which permitted ex-
act analytic solutions. Following the variational ap-
proach of Desaix, Anderson, and Lisak [10], we shall
show here, for the two illustrative models, that for d =1,
the variational approach can yield accurate analytic for-
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mulas for P(8) and the bistability criterion. The corre-
sponding trial wave functions are, of course, also accu-
rate analytic representations of the solitary-wave shapes.

The variational approach is readily applicable to
higher dimensions. For the two models considered here,
the qualitative criterion mentioned earlier indicates that
U-shaped P(8) curves are possible for d =2 and 3. In
this case, only one stable branch is possible, viz., the
upper positive-slope leg of the U. Enns and co-workers
[3-5] have created f(I) which yield N- or W-shaped P(5)
curves in three dimensions, i.e., f(I) which have two
stable branches. The low and high state bistable light bul-
lets of Refs. [3—5] correspond to these two branches. Be-
fore attempting to tackle these more complex f(I), it is
desirable to test the variational approach for d =2 and 3
on the simpler f (I) characterized by models 1 and 2.

So in the next section we shall apply the variational
method to both models for arbitrary d. In Sec. III we
shall compare the variational results with those obtained
numerically. In particular, we shall concentrate on the
energy formulas and the bistability criterion. In Sec. IV
we shall discuss the potential application of the variation-
al method to the three-dimensional (3D) bistable light-
bullet problem.

II. VARIATIONAL CALCULATION

In d dimensions, the intensity-dependent GNLSE takes
the form (assuming anomalous dispersion and symmetric
solutions)

Bu 1 1 3

; _ a—10u
a§ 2 pd_l ap

+fUI=|ul>)u=0, (1)
9p

where for the optical problem, u is proportional to the
electric-field amplitude; § to the distance coordinate in
the direction of propagation; p=\/§2+772+1'2 where &, 1
are normalized space coordinates in the transverse direc-
J
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tions and 7 is the normalized time, and f(I) is propor-
tional to the intensity-dependent part of the refractive in-
dex [1-5,10]. The Lagrangian associated with Eq. (1) is

2
i du* du _ 1 | du _
=211, _, «9% | a-1, 1 |OU | d—1
2 [“Tae ¥ e 2op | *
—F(lul?)p? 1, )
where

F()= fo’f(l')df'

and the asterisk denotes complex conjugate.

The form of the Lagrangian may be verified by noting
that Eq. (1) results on substituting (2) into the variational
equation [10,11]

8L _ 3 oL +i oL _dL -0
Su* 3 du* op u* ou* ’
9 & ap

(3)

As a trial wave function, we take
n
_P

. 2 4
() exp[ib(§)p”], (4)

u(p,&)= A(&)sech™

with m,n positive real numbers. The amplitude A4 is al-
lowed to be complex while the width a(§) and “chirp”
parameter b(§) are real. By choosing different m and n
we build some flexibility into our trial wave function. Of
course, completely different forms (e.g., Gaussian) could
also be chosen but the choice is severely limited by the
necessity to be able to do the relevant integrals.

Substituting the assumed form (4) into Eq. (2), we next
form the “reduced” Lagrangian, viz.,

® ] dA* dA |a“ db ad+?
<L>:fo Ldp:é 4 d¢ _A*dg -n—ld/n—l,2m+|A|2 E+2b2 o La+am—10m
Ly 12,2, ,d—2 a? o 2ganh2my ), d/n—1
= m*na® 2y 4 m— sech®”z )z z,
+2|A| (d—2)/n+1,2 n fo F(| 4 |*sech®"z)z?/"~'d (5)
with

1,5= f sz asech’z dz
and

Y(Z,B=IG,B‘—I(1,B+2 .

Some explicit values of I,  are given in Table I. These will be needed for the discussion in Secs. III and IV.

the reduced Lagrangian (5), we then calculate

S(LY _ 3 [ L) |_ar)y_
5A4* 3 |d(dA*/dE) dA4* ’
8(L) _ 8(L) _ 8(L) _

54 0 “sa 0 s 0

from which it follows, after straightforward algebra, that

| 412a=const=Jy=(n /lym—12m)P

(6a)

(6b)
Using

N

(8)
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TABLEL I,z= f sz"sechﬁzdz. G is Catalan’s constant, which is equal to 0.915 965 594. n denotes
numerically evaluated.
a 0 1 2
B
1 T/2 2G /8
2 1 In2 T /12
3 /4 0.415965 594 2" 0.367095965 7"
4 2/3 (41n2—1)/6 m/18—1/3
6 8/15 (8/15)In2—11/60 0.1053157512"
8 16/35 (481n2—19)/105 0.064 873 818 45"
10 128/315 (128/315)In2— 1321 /7560 0.044967203 71"
12 256/693 (256/693)In2 — 6983 /41580 0.033491108 71"
with the energy
P= il ul20d—1g , 9)
S ulPp?Mdp
—1 da (10)
2a d&
2 2,2 _ © —
d c; _m ;1 Y(d—2)/n+1,2m d . f [F(I)—If(I)]zd/" ldz=0, (11)
d¢ a Iig42)/m—1,2m Ligsaym—t1,0ml A1%a >0
5= i[A(dA*/dE)— A*(dA/dE)]
2| 41?
2.2 _ .
— i |\ Vonmttom | L1 i+ rn—4Fw |24 dz (12)
a Id/n—l,Zm Id/n—l,ZmlA' 0 2 2

with =] 4 |%*sech?™z in Egs. (11) and (12).

To proceed any further we must insert specific forms of f(I).

preceding section.

Evaluating F (1), we have
F(D=1aI*+1a,I*—1a,I° .

We shall now consider the models introduced in the

A. Polynomial model

(13)
Equations (11) and (12) then become
d’a _m®n® | Ya-am+iom | 181950 | Lajm—1,4m
dg? a® | Ta+a/m—1,2m 2 a?*' | Ig4y/m—1,2m
36dT | Lam—rem |5 @455 | Tam—1,10m —0. (14
4 a3 | Tgioym—1,2m 6 >t | Iigiay/m—1,2m ’

which resembles an equation of motion, and

5= m?n? | Yid—21/n+1,2m
a? Ty/n—1,2m
I,
+a, 1+£l— |42 d/n—1,4m
4 Ii/n—1,2m
I/,
+a, 1+_3i1_ |46 d/n—1,8m
8 Ii/n—1,2m
I,
—a, 1_}_2(1 |41 d/n—1,12m
12 Id/n—1,2m

f

Setting y =a({)/ay, where ay,=a(0) is the initial width,
and dy /d§l§=o=0 (zero “initial velocity”), Eq. (14) can
be integrated once to give the “energy” relation

1 tdy (o)

2 |ac +uw(y)=0, (16)
with the “potential energy,”

__ 7 _1 By B, B

7T~——;—;7—“;—d———y—3(7+yh5d-—(l‘—Bl—B2—B3).

(15) (17
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p= m?n? | Yid—2)/n+1,2m
2a¢ | La+2/m—1,0m

and, corresponding to the coefficients a;, the B; are given
by

2—d
ag “Jo Iy/n—1,4m
Bl_al 2.2 )
m-n Y@—2)/n+1,2m
2—3d 3
ag Ty Ii/n—1,8m
B,=a, ) , (18)
2m~°n Yd—2)/n+1,2m
2—5d g5
. ag Iy Ti/n—1,12m
B;=a, 33 .
3m<n Yd—2)/n+1,2m

It should be noted that since the B; >0, collapse of any
input pulse to zero width (y =0) cannot occur because
the B;/y> term dominates. For the Kerr case
(B,=B;=0) collapse can occur for d =2 and 3, as noted
by Desaix, Anderson, and Lisak [10].

To obtain the parameters appropriate to the solitary-
wave solution, we impose the stationary condition

4001

a=ag, then b=0 and u(p,0)= Aysech™[(p/a,)"] is the
variational approximation to the solitary-wave shape.
Setting 43=1"a,/a;x% R =a,a;/a? and

Y(r=va,(ay/a;)"*p)=(a;/a,)""*u(p,0) ,

the solitary-wave profile may be rewritten as
Y(r)=x sech™[(r /@,)"] with
172
1 Al n—1,4m
a 2m*n %Y (4 3y mt1,2m
I,, _ 4
wx |14 2 |Zd/n=18m | x7
2 \Iym—1,am | R
172
I;,,_ 8
__2 d/n—1,12m x_ (19b)
3 Id/n—1,4m R

For given d, m, and n, specifying the normalized ampli-
tude x determines the solitary-wave profile Y(r) for each
choice of R. Making use of Egs. (15) and (19b), we calcu-
late the normalized solitary-wave phase shift,

d#(y)/dy|,—;=0  which yields, on  setting 12
|A(y=1)|=4,, g= || &
a a
1 dA(z) 2 1
—_— = I _
ag  2m’n*yig 3y mi1,2m = 1—1 Zd/nzLim |2
4 Id/n— 1,2m
X Id/n—1,4ma1+—2_1d/n—1,8mAgaZ N 1__31 Ly/n—1,8m Lx(’
5 8 Id/n—l,lm R
N ?I‘“"—l'um Agas (192) {1 5d | | Lam—1,2m | 1 1o 20)
—_— —— e —— _x
12 I;,,_ R
Equation (19a) gives the necessary relation between the /n=1,2m
width a, and height A4, for the solitary wave. Since and normalized solitary-wave energy,
J
d/4—1/2
P=qgd2 |22 P
1 a,
d/2
2V 2—d
:mdnd—lld/n_lyzm 7/;; 2)/n+1,2m ] x 7T . (21)
d/n—1,4m 3 dam—18m |1 4 5 |dam—1,0m |1 4
I+= j—— | =x*— —_— | =x
2 | Lijn—1,am | R 30 Lim—1,4m | R
I
By specifying x (i.e., 4,) one may calculate 3 from (20), P =T y)
from (21), and then plot P vs 3. 73
B. Saturable model =%-—1+9[H;(y)+(l—e)H,;(y)—Z(l—e)HE(y)] ,
y
Y = - (23)
F(I)=I—[a “In(1+al)+(1—e)b “In(1+bI) where
—2(1—€)e In(1+e)]/foy - (22) 5
Hy(y)= {—L 3 (y9—1)+(arccosX )?
Unlike the situation for the polynominal model, the in- 4d
tegrals in Eqgs. (11) and (12) cannot be carried out for gen- X 2
eral m,n. One case which can be solved is m =1, n =d —y? |arccos — ]/X2 s (24)
for which the potential energy is given by Y




4002

—— 32 4
=d Ya—2/4,178a0l2/4,1>

2 42 (25)
0=4a5A5/ftV2-2/d,1 »
and A=ad3, B=bA}, C=cA}.
Also
1 243
0(2) d7’2—2/d,1fsat
X[h(A)+(1—e)h(B)—2(1—e)h(C)], (26)
with
2 X arccosX
h(X)= | Z— —(arccosX )2 —2 2 2rccost /X2 27)
4 &
_ ((—l—d)1~d/22l+d/2P
P= d/2
7T(7’2—2/d, 1S sat)
—1—d/2
S 4_ 2
[A(4)+(1—e)h(B)—2(1—e)h(C)]?/?
and
s=1— |4 [g(A)+(1—e)g(B)—2(1—€)g(C)]
2 | [A7'+(1—e)B '—2(1—e)C '] ’
(29)
where
g(x)=2 _arccosX ., vy (30)

d xv'1—Xx?

Note that in using the analytic forms (26)—(30), one is
limited by the fact that the arguments of the arccos terms
cannot exceed unity. When any one of the arguments in-
creases above one, no simple analytic form for the
relevant integrals exists.

III. COMPARISON OF VARIATIONAL
AND NUMERICAL RESULTS

Since the emphasis in this paper is on the bistability as-
pects, we would like to compare the variational energy
formulas with numerically obtained results. Taking the
polynomial model as an example, the numerical P(S)
curve is obtained as follows. Assuming that
u(p,£)=V(ple® and  setting Y =(a;/a,)’*V,
r=a}’*(a,/a;)"*p, Eq. (1) yields

rd2Y+ (d—1)dY
er dr

1

+2r —/3Y+Y3+f 1

7L yn|—
Y R Y 0. @31
To obtain a solitary-wave solution, we want Y=Y .,
dY /dr=0 at r =0, and both Y and dY /dr—0 as r — .
For given 8 and R, Eq. (31) is numerically integrated for
different Y., until an amplitude is found for which the
asymptotic (r— o) boundary conditions are satisfied.
With the solitary-wave profile Y, (#) then known, the
normalized energy is then calculated numerically from
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F=fowY§ol(r)rd_ldr . (32)

To be consistent with standard practice in earlier papers
[1,2], for 1D the numerical energy result is multiplied by
2 since the limits really should be from — o to + . We
first look at the 1D results, then at higher dimensions.

A. One-dimensional results

We start with the polynomial model. In the Kerr limit
(a,=a;=0), the choice m =n =1 yields the exact analyt-
ic solitary-wave solution. In terms of R =a,a; /a2, this
limit corresponds to R — . Thus for large R we might
anticipate that for the complete polynomial the trial wave
function with m =n =1 might be a reasonably good ap-
proximation to the exact (numerical) solitary-wave
profile. But, as already mentioned in the Introduction,
we known from previous numerical studies that for bista-
bility (i.e., an N-shaped energy curve) to occur we must
have R <R_~0.08. How good is the m =n =1 varia-
tional result for such low R values? Would we be better
off to make other choices for m and n? From Egs. (20)
and (21) and Table I, we obtain for m =n =1 the follow-
ing formulas for the phase shift and energy:

_ |1 1.2 2 6 64 10

= |2 a2+ | == |x0— |2 (33)
Buar= |5 |¥ 7R 297R |*
= X
P . (34
[1+(36/35R )x *—(640/693R )x®]'/?

In Fig. 1 we have plotted P, (B,,) given by (33), (34) as
well as the numerical P(B) for R =0.01<R,. The
agreement is remarkably good. A minor discrepancy
occurs, however, high on the upper positive-slope leg of
the N. This is better seen in the inset where we have
magnified the relevant region and used a linear scale for 8
rather than the log scale of the main figure. Numerically

0.6 T T T T T

0.2

6 8 g 10
OO L L 1 1

10“"10—310'210-1 10% 10! 102
4

FIG. 1. One-dimensional P(8) curve for the polynomial
model with R =0.01. Numerical, dotted curve; m =n =1 [Egs.
(33), (34)] variational formula, solid curve. Inset: enlarged view
of upper end of P(B) curve.
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dP /dB remains positive whereas the variational curve
has a negative slope. The latter implies absolute instabili-
ty, whereas it has been previously observed [2] through
collision studies that the high state solitary waves are
stable against small perturbations. The source of the
discrepancy lies in the behavior of the phase-shift formu-
la (33) at sufficiently large x. That this is so follows from
the fact that in 1D (but not for higher d), B may be de-
rived exactly. Equation (31) can be integrated once to
yield

2

11dY | _,v2 14 1 o, 1 4y
— |E5 | =BY =¥ ———Y'+-—Y2. @35
2 | dr BY 2 Y 4R ro 6R Y (33)
Then, setting Y=Y,, =x=(ay/a,)""*4, and
dY /dr =0 in Eq. (35), we obtain
1 1 1
Bexact= E x2+ E x6— "6; xlo . (36)

For R— ®©, B;:=Bexact =Bkerr =% 2, the exact Kerr
phase-shift formula. The Kerr phase shift increases con-
tinuously with x, but for the polynomial model, 8 eventu-
ally decreases at large enough x. In Fig. 2, we have plot-
ted Eqgs. (33) and (36) for two different R values, R =0.1
and 0.01. The agreement between the two curves is
better over a wider range of x for the larger R value. In
either case the variational B curve peaks slightly earlier
as a function of x than the exact result. For R =0.01, the
R value of Fig. 1, one finds that P, (~P,,)— © as
Bexact approaches its maximum value. The B,,, curve de-
creases prematurely, leading to the spurious negative
slope in P, at large B. That the variational phase-shift
formula is less accurate than the variational energy for-
mula follows by plotting (not shown here) P vs B,,,.,. The
agreement with the numerical energy curve in Fig. 1 is
essentially perfect. However, referring to Fig. 1 again, let
us emphasize that P, vs B,,, gives a very good fit to the
numerical energy curve, other choices of m and n being
less accurate.

For example, for m =%, n =1, one obtains from Egs.
(20), (21), and Table I,

10 T T

)
]

-5 1 1
0.0 0.4 X 0.8 1.2

FIG. 2. Normalized phase-shift () dependence on normal-
ized amplitude (x) for polynomial model in 1D with R =0.1 and
0.01. Bexace [Eq. (36)], solid curves; m =n =1 formula (Eq. (33)
for B,,., dashed curves.

4003
— |3 Tl 2, |5 | 6_|_28 | 10

B ‘w 2 18R |~ 135R |~ ] (37
p= (w/4)WV 7w /2x (38)

[1+(1/R)x*—(8/9R )x ]2’

which is plotted in Fig. 3 for R =0.01 and compared to
the numerical curve. For m =1, n=1, B, only reaches
8.07 compared to B,,,~=8.56 for m =n =1. Furthermore,
B differs from B,,,.; as R — oo by the factor 3 /7=0.955.

As a corollary to this, one might expect to calculate
R, fairly accurately from the variational formulas for
m=n=1. When an N-shaped energy curve is present,
dP,,. /dp,, has two zeros corresponding to a maximum
(upper end of the lower positive-slope leg) and a
minimum (lower end of the upper positive-slope leg). As
R is increased, the two zeros move towards each other
and coalesce when R, is reached. For R >R, there is
no real zero and bistability vanishes.

From Eqgs. (33) and (34) on forming

dP

dﬁvar / dBVal'
dBVaf

dx dx
we obtain the location of the two zeros at

xo=[(A+V A4*—12B )/6B]'/*, (39)

cr?

var

=0’

with 4 =36/35R, B=640/693R. Coalescence occurs
when 42=12B, i.e., at R* =2673 /28 000=~0.095. This
is in good agreement with the numerically obtained value
R7'™=0.088.

Turning now to the saturable model, we consider the
same choices of @,b,€ as in Ref. [9] where P(8) was cal-
culated numerically. For example, an N-shaped energy
curve was observed for @ =0.01, 5 =0.04, and €=0.01 as
shown in Fig. 4. Also shown is the variational result cal-
culated from Egs. (28) and (29). The agreement between
the two curves is excellent. The variational curve ter-
minates at a finite 8 value because B =b 4 3 reaches unity
and the analytic forms (28) and (29) can no longer be
used. Unfortunately, for larger B analytic forms do not
exist for the relevant integrals.

0.6 T T T T

0.4

0.2 +

0.0 : : : . :
10"410-310"210"1 10° 101 102

FIG. 3. 1D P(B) curve for polynomial model with R =0.01.
Numerical, dashed curve; m =1, n=1 [Eqgs. (37), (38)] varia-
tional result, solid curve.
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350 2

K(X)= [3172/4 ] —3(arccosX )*— (—12XTZ)
300 p
S X(8X%—6)arccosX 2

5 250 t Ry + (1—x2)72 /X (41)
200 + In Ref. [9] we found, e.g., for 2=0.01, b=0.05, that
€,~=0.01-0.02. For €> ¢, the N shape disappears and
150 r there is no bistability. For these @,b values one finds
from Egs. (40) and (41) that €,=0.0140, agreeing with
100 . . the numerically observed value. Alternately, holding
10~% 1073 61 0-2 10 €=0.01, 2=0.01, and varying b, we find from Egs. (40)

FIG. 4. 1D P(8) curve for saturable model with @=0.01,
b=0.04, and €=0.01. Numerical, dotted curve; variational for-
mula [Egs. (28), (29) with d =1], solid curve.

As for the polynomial model, we can set
dP/d86=(dP/dA,)/(d8/dA,)=0 and, say, for fixed
@,b,c look for the critical value of €, €., at which coales-
cence of the two zeros takes place. The result of this cal-
culation is the transcendental equation

and (41) that 0.4 <b 54 for bistability to occur, in com-
plete agreement with the numerical results obtained in
Ref. [9].

Thus, at least for the two representative models con-
sidered here, the variational approach does an excellent
job in 1D of accurately predicting the critical parameters
for bistability to occur as well as the detailed shapes of
the bistable energy curves. What is the situation for
higher dimensions?

B. Two- and three-dimensional results

Again we look at the polynomial model first. Three

K(A)+(1—e)K(B)—2(1—¢€)K(C)=0, (40)  different choices of m,n are considered for d =2, viz.,
) making use of Table I, as follows.
with (iym=n=1.
J
—(1__1 2, |4 19 6/ _ | 128 6983 10/

k [3 121n2 35 a20m2 © /R | 2079 " 2av4s0mz | /R 42
= [(2In2+1)In2/(41n2—1)] 43)

1+ 3(48In2—19) | x* | 10(2561n2 /693 —6983/41580) | x°

35(4ln2—1) | R (4In2—1) R

f

(ym=%L,n=1 P= [(n2+1/2)(7/4)] @7)

m2 |, |(4m2—1) 6/
= [In2 4lns—1) R
B=\46 1| a8 |
T 1206
5 [G(2G—1I, 5)/21n2]

8
1+[1—(1/41n2))(x*/R )—[8/9——(11/361n2)]%

(45)

where G is Catalan’s constant and the numerical value of
1, is given in Table 1.

(iiil) m=1,n=2.
1 2 4
—_ + —_
3 ]x 35R

128

B= 2079R

x10 (46)

1+[36/35](x*/R )—[640/693]%

Independent of the particular choice of m,n, the energy
formula is of the general structure P~1/
[14 Ax*+ Bx?], so that one finds zero slope occurring at
xo=0 (i.e., B=0) and x,=(A4/2B)"/2. But the ratio
A /B is independent of R so there is no R, for 2D. This
conclusion is supported numerically and is consistent
with the slope rules discussed in the Introduction, i.e., for
any value of R, P starts out with zero slope, dips to a
minimum at x, (i.e., at ), and then increases.

As to accuracy of fit, in Fig. 5 we have compared the
three choices embodied in Egs. (42)—(47) against the nu-
merical energy curves for R =0.1 and 1. At low S, the
first two choices fit well but deviate as 3 increases. As in
1D the m —-%, n=1 curve turns upward before the
m =n =1 curve. Reasoning that holding m at 1 but al-
lowing n to increase would cause the energy curve to turn
up later as a function of B, we considered m =1, n=2.
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FIG. 5. 2D P(B) curve for polynomial model with R =1
(right ordinate) and R =0.1 (left ordinate). Numerical, solid
curves; m=n=1 [Eqgs. (42), (43)] formula, dash-dot curves;
m—%, n=1 [Egs. (44), (45)] formula, dashed curves; m =1,

=2 [Egs. (46), (47)] formula, dash-plus-two-dot curves.

Indeed the energy curve does turn up later but the overall
fit is very poor for both R values.

In Fig. 6, we have d =3 and again take R =0.1 and 1,
U shapes occurring for any R. We consider the two fol-
lowing cases.

(iym=n=1.

312,8
272

2

SR N
2x

B:

x(’/R

1
6

37
2,12 xlo (48)

FIG. 6. 3D P(B) curve for polynomial model with R =1
(right ordinate) and 0.1 (left ordinate). Numerical, solid curves;
m=n=1 [Eqgs. (48), (49)] formula, dash-dot curves; m = L

=1 [Eqgs. (50), (51)] formula, dashed curves.
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FIG. 7. Two- and three-dimensional variational P(8) curves
for saturable model with @=0.01, 5=0.04, and €=0.01. 2D,
solid curve; 3D, dashed curve.

(7 /12)[(7*+12) /(37— 18)]*"?
271, 4 301, 4,

X
(m*—6) (m*—6)

ol
I

377, (49)

1+ =

where the numerically evaluated values of I, ¢ and I, ;,

are given in Table I.
(fiym=1,n=1.

(o —6)

2_

8= 1 x°/R |
6 /

/R+

[(w/4)—21,;13%/8
x{1+[1—(6/7")]x*/R —(20I, ¢ /n*)x® /R }?/* ’

(51)

where I, 3 and I, ¢ have been evaluated numerically. As
one progresses from 1D to 3D, we see from Figs. 1, 5,
and 6 that our trial wave functions progressively are less
successful at producing good fits to the numerical energy
curves. We have tried to include flexibility by allowing m
and 7 to take on different values but in higher dimensions
this is clearly not sufficient.

Finally, in Fig. 7 we show the two- and three-
dimensional variational results for the saturable model
with, e.g., 2=0.01, 5=0.04, and €=0.01. As expected
from the guidelines in the Introduction, the 2D curve
starts out with zero slope at very small §. Both curves
terminate at an upper limit of § without revealing the
positive-slope branch of the U-shaped energy curve which
is observed numerically (not shown). Unlike the situation
in 1D, the agreement with the numerical curves over
most of the range shown in Fig. 7 was found to be quite
poor.

(50)

P‘:

IV. DISCUSSION

Although the variational method works extremely well
in 1D in discussing BISOL1 for the representative mod-
els, in higher dimensions the method becomes less accu-
rate, the variational energy curves deviating substantially
from the numerical curves at larger B values for the poly-
nomial model and prematurely terminating at some f8
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FIG. 8. Three-dimensional P(X) curve given by variational
formula (53) for R =0.3, R'=0.2.

value for the saturable model. Of course this is an indica-
tion that our trial wave functions should have a com-
pletely different form at large 3, but coming up with the
right trial wave function for which the relevant integrals
can be done is clearly a nontrivial task as evidenced by
the fact that some degree of flexibility was built into the
trial wave function (4).

For bistable light bullets in 3D governed by W-shaped
energy curves (basically two U’s back to back) the situa-
tion gets even worse. As a simple example,
fD=a,I—ay]*+aI*—a,JJ* with a,...,a,>0
should yield a W-shaped energy curve on suitably adjust-

|

P=a3"?(a,/a;)"*P

(T N12D{[(72/18)+(2/3)] /(w2 /6)—1)}3"?

0.8 T T T T

0.6 | .

= 0.4 1

B
0.2 1

0.0 1

_0.2 1 1 1
0.0 0.5 1.0 S_(1.5 2.0 2.5

FIG. 9. Phase-shift formula (52) for R =0.3, R'=0.2.

ing the coefficients. Using Eq. (4) with m =n =1, we ob-
tain (again using Table I) for the phase shift and energy,
respectively,

B= 93 8§= _1.__1.._ =2
aa, 6 7?
3I —
_ 2,28 556 R
2
121 R’
T RESNERH (52)
S R

with R =a,a,/a3, R'=a,a,/a% and X*=(a;/a,) A},

(53)

Cx(1 —[4I, ¢ /(7 /6— D2 /R +[31, 5 /(w2 /9—2/3)1%* /R — 81, 10 /5(m* /18— 1/3))(R' /R )% °}*"

For R =0.3, R'=0.2, P is a W-shaped function of x (i.e.,
amplitude) as shown in Fig. 8. However, as seen in Fig.
9, over the same range of X, 8 not only turns over prema-
turely but goes negative before once again increasing.
This leads to bizarre behavior of P,,.(B,,,) in the middle
of the f,,, range.

Similarly, it is easy to show numerically that for, e.g.,

the saturable model

I T + el
(1+al) (1+bI) (1+ecl)’

f)=

a W-shaped energy curve occurs (not shown here) in 3D
for a suitable choice of the parameters, e.g., a =0.01,
b =0.0101, ¢=2, and e=0.2. Since it was unable to
even reproduce the positive-slope leg of the U-shaped en-
ergy curve in 2D or 3D for the earlier saturable model,
the trial wave function (4) is unable to reproduce the W-
shaped energy in 3D for the above saturable model.

To apply the variational method to 3D and the bistable

light-bullet problem in particular is going to involve a
search for more suitable trial wave functions. Correctly
calculating the phase shift for polynomial models appears
to be much more of a difficulty than calculating the ener-
gy as a function of amplitude. Since for any saturable
model F(I) will involve logarithmic functions, the choice
of possible trial wave functions for which subsequent in-
tegrals in the variational treatment can be done analyti-
cally is even more limited.

V. CONCLUSION

The variational approach has been applied to a study
of bistable solitary waves of the first kind (BISOL1) in d
dimensions for two representative models. For our
choice of trial wave functions, the method works ex-
tremely well in one dimension but becomes less successful
as d is increased. As discussed, this has practical implica-
tions as to the successful variational treatment of the bist-
able light-bullet problem.
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